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GENERATING VALID SMILES SEQUENCES USING GENERATIVE DEEP

MODELS

Abstract

Drug discovery seeks to generate chemical species tailored to particular and very

specific properties. Existing literature shows that the deep learning models used for this

task exhibit scope for improvement in terms of the validity of generated drug molecules.

Recurrent Neural Networks (RNN) and Variational Autoencoders (VAE) are among

widely used architectures in this area largely due to the string-like representation of

molecules called SMILES and due to their previously established success in sequence

generation tasks. These SMILES strings follow a grammar with a certain set of syn-

tactic and semantic rules and generating valid strings following these rules is not an

easy task. This thesis proposes a novel training strategy, involving a validity factor, to

improve the validity of SMILES sequences generated by these deep generative archi-

tectures. RNNs and VAEs were trained on 50,000 SMILES strings (from ZINC dataset)

using the proposed strategy and improvements of 4.48% and 49% respectively were ob-

served in the validity. Thus, this work shows that the proposed validity factor can be

exploited in deep generative models to improve the quality of their results in terms of

valid sequences generated.
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CHAPTER 1

INTRODUCTION

Although advancements in medicinal chemistry has particularly changed the way

you live and die [1], there are still problems that are extremely difficult to solve and

creating novel drugs is one of then [2]. The development of a new drug begins with

scientists learning of some biological target (enzyme, protein, gene, etc) involved in

a biological process whose mode of action differs from existing medicines. Identi-

fying chemical compounds or molecules that are active towards these targets is quite

challenging for chemists as it involves scouring the entire search space of nearly 1060

molecules [3]. The chosen molecules must be active in terms of molecular binding with

biomolecules or elicit anticipated physiological responses on ingestion as drugs.

Current strategies to explore and discover molecules lie with high-throughput screen-

ing (HTS) [4] and genetic algorithms [5]. Although modern technology allows HTS at

the scale of 104 [4], larger experiments turn out to be exceedingly expensive. HTS is

the process by which a large number of compounds is automatically tested for some

activity (activation, inhibition, etc) with the goal of identifying high-quality “leads" [6].

In order to achieve this, an enormous library of compounds is generated and then po-

tential molecules are searched among the existing millions for closeness with known

drugs using some similarity-based metrics [7]. The idea that bases this method is that

in the molecular space, molecules closer to actual drugs may have stronger drug-like
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properties. Thus, having computational tools that can narrow down the search space

can prove very useful in overcoming practical limitations.

The task at hand aims at generating novel molecules (de-novo drug design) auto-

matically. The end-to-end process involved in producing just one new drug manually

takes upto 15 years and costs over 500 million dollars [8]. Drug discovery is the first

stage in this process. In this stage, potential drugs are identified as candidates which

then continue to clinical trials. The steps involved in this process can be seen below in

FC1.1 [9].

Figure FC1.1: The drug discovery pipeline

This problem of molecular discovery can also be posed as one of “inverse-design"

[7] where fit candidates are generated specific to a set of properties and rules. Develop-

ments in Deep Learning and Artificial Intelligence (AI) such as Generative Adversar-

ial Networks (GAN), sequence generation models and Reinforcement Learning (RL)

have accelerated the feasibility of inverse-design. In this context, AI-based models are

trained to generate new lead compounds such that their chemical and medical properties

are predicted in advance.

There has been some research in the field of drug discovery using AI (as discussed

in later chapters). Yet, there is a gap between the quality of results obtained and that
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demanded by the community. To train generative models for this task, molecules are

often represented as strings. This is largely due to the existence of powerful models for

text sequence modelling [10]. However, these string representations of molecules are

extremely brittle in the sense that small changes in the string can lead to completely dif-

ferent molecules. Moreover, these strings follow certain rules of syntax and semantics

which may not be straightforward for a model to learn, thus leading to the generation

of invalid strings. Such invalid strings cannot be decoded into plausible molecules.

Although there are works that address this specific problem like Grammar Vari-

ational Autoencoder (GVAE) [10] and Syntax-Directed Variational Autoencoder (S-

DVAE) [11], out of the large number of molecules being generated by these models,

the number of valid ones that are realizable in real-life, is small. Due to the complex

nature of rules followed by the bonds and chains in chemical compounds, it is difficult

for deep learning models to learn them inherently. Hence there is a need to explicitly

supply the model with information regarding these rules. This idea was introduced by

Dai et al. in their work S-DVAE [11].

Conceptually, structure generation requires formalization of the structure and the

parameters of the stochastic processes involved are produced by a deep learning model

[11]. These deep generative models, with the help of sufficient training examples,

should be able to prefer valid sequences and shift the distribution towards the desired

region in molecular space automatically. However, the problem of generating data that

is correct in both syntax and semantics is still open.

A novel approach that hasn’t been used for solving the problem of generating valid

molecules is by training the model specifically for this. Existing research uses RNNs

[12, 13], autoencoders [11, 14] and GANs [15] which do not explicitly penalize the

model for generative invalid molecules. The RNN and autoencoder based methods are

trained to reconstruct valid SMILES (Simplified Molecular-Input Line-Entry System)
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strings while the GAN includes a discriminator that gives a higher reward for valid

strings generated. However, the results obtained by these models indicate that there is

scope for improvement. These are described in detail in the literature survey section

(Chapter 2) and are compared with the proposed approach in the later sections. An im-

portant point to note is that these methods also address diversity of generated molecules,

drug-likeliness, solubility and other specific properties. However, this thesis is focused

solely on improving the validity of the generated strings, which is an independent prob-

lem in itself, and all comparisons carried out are on this basis.

The rest of this document is divided into six main chapters. Chapter 2 surveys the

literature related to AI in drug discovery and describes the research work important

to the development of this thesis. Chapter 3 discusses the various kinds of molecular

representations popularly used for computation. In Chapter 4, the datasets used for this

work and those commonly used in drug discovery, are examined. A brief overview of

all the deep learning networks and tools used in this work follows in Chapter 5. The

remaining Chapters 6 and 7 detail the experiments carried out with results and provide

conclusive insights respectively.
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CHAPTER 2

LITERATURE SURVEY

This chapter describes literature that has helped develop my hypothesis. This survey

details the strategies and major claims of the works being studied. This is an impor-

tant step in identifying the advantages, limitations and challenges introduced by these

papers to solve the problem. A variety of deep learning based solutions have been em-

ployed to generate novel drug molecules such as Adversarial Autoencoders (AAE) [14],

Variational Autoencoders (VAE) [11], sequence to sequence models (RNN) [12, 16],

GAN [7] and RL [17, 18]. This section will deal in detail with three of the above men-

tioned architectures, namely, RNNs, VAEs and GANs.

The work on AAE [14] is specific to generating anti-cancer drugs. It makes use of a

7-layer autoencoder (encoder-decoder) setting where the middle layer acts as a discrim-

inator. The discriminator is trained to differentiate between a given latent distribution

and one from the encoder. Meanwhile, the encoder is trained to generate representa-

tions that can confuse the discriminator. In this manner, it follows an adversarial train-

ing while the encoder and decoder are also trained jointly to work as an autoencoder.

The latent layer also contains a neuron known as a “growth inhibitor". A negative

value of the growth inhibitor means that the number of tumour cells have reduced after

treatment with a particular drug. The molecules are represented by fixed length binary

vectors known as binary fingerprints. Since this method is very specific to anti-cancer
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drugs, it does not fall directly under our interest. Hence the proposed approach is not

deployed on this model and the results obtained are not compared.

RL based techniques were used in conjunction with RNNs by Jaques et al. [17] to

generate SMILES with molecular properties like solubility, etc in a desirable range.

However, the reward function is dependent on manually written rules for penalizing

undesirable structures. To overcome this, Olivecrona et al. [18] introduced a policy-

based RL algorithm to fine tune pre-trained RNN models for molecular generating.

The following sections discuss in detail, the works by Segler et al. using RNNs

[12], Dai et al. [11] involving Syntax-Directed Variational Autoencoder (S-DVAE) and

Sanchez et al. on Objective Reinforced Generative Adversarial Network (ORGAN) [7].

The results from the proposed work in this thesis are compared primarily with those

obtained by using these architectures.

2.1 Generating Focussed Molecule Libraries for Drug Discovery

with RNNs

This work by Segler et al. [12] shows that RNNs can be trained as generative models

for molecular structures. Generative models learn the probability distribution over the

training data and sampling from this distribution generates new results close to the

training data. This work is based on the hypothesis that a generative molecule trained

on drug molecules will “know" how valid drugs look like and thus generate them.

Long Short Term Memory (LSTM) based RNNs are trained on a corpus of drug

molecules represented as SMILES strings (more details in Chapter 3). SMILES is a

formal grammar that describes molecules with ah alphabet of characters, numbers rep-

resenting rings and brackets indicating chains. To generate valid SMILES, the RNN

will need to learn this grammar. This work encodes the input SMILES as one-hot rep-
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resentations [19]. That is, if there are K symbols, and at time step t, k is the input

symbol, then the input vector xt can be constructed with length K with only the k-th

position as one and all other entries zero.

The probability distribution Pθ (st+1|st , ...,s1) of the next symbol given the previous

sequence is estimated using the output vector yt of the RNN at time step t by

Pθ (st+1|st , ...,s1) =
expyk

t

∑
K
k′=1 expyk′

t
(Eqn 2.1)

where yk
t is the k-th element of vector yt . Sampling from this distribution generates

novel molecules.

Furthermore, their work also demonstrates that RNNs can transfer the knowledge

learned by training on large molecule sets to produce novel molecules by retraining on

small sets of known actives. They test their model on a corpus of active molecules and

report close to 97% validity of SMILES strings generated.

2.2 S-DVAE for Structured Data

Conceptually, generation of structured data includes formalization of the structure

and a deep generative model producing parameters for stochastic process [11]. This

is based on the belief that with sufficient training examples, the loss function will pre-

fer valid patterns. Conditional Variational Autoencoder (CVAE) [16] applies sequence

models to convert complex structures into sequences for chemical molecule generation,

using SMILES line notation. However, the lack of formalized syntax and semantics

serves as a restriction on the structure generation. In Grammar Variational Autoencoder

(GVAE) [10], Kusner et al. incorporate structure restriction explicitly by taking into

account the Context-Free Grammar (CFG) of SMILES. Althoug this handles syntactic
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validity, is it still incapable of regularizing the model for semantically valid genera-

tion. S-DVAE [11] tackles this challenge by introducing stochastic lazy attributes that

enables converting offline semantic check to online.

A CFG is defined as G = 〈V,Σ,R,s〉 where V is the set of non-terminal symbols,

Σ is the set of terminal symbols, R is the set of production rules and s ∈ V is the start

symbol. Each production rule determines transition from a non-terminal symbol to a

sequence of terminal and/or non-terminal symbols.

Attributes attached to non-terminal symbols in CFGs formalized by Knuth et al. [20]

enriches it with “semantics". These attributes may be inherited from its parents and

siblings or synthesized from the attributes of its children. This formalism is known as

attribute grammar [20].

Production

〈s〉 → 〈atom〉1‘C′〈atom〉2

〈atom〉 → ‘C′|‘C′〈bond〉〈digit〉

〈bond〉 → ‘−′ |‘ =′ |‘#′

〈digit〉 → ‘1′|‘2′|...|‘9′

Semantic Rules

〈s〉.matched← 〈atom〉1.set ∩〈atom〉2.set

〈s〉.ok← 〈atom〉1.set = 〈s〉.matched = 〈atom〉2.set

〈atom〉.set← φ |concat(〈bond〉.val,〈digit〉.val)

〈digit〉.val← ‘1′|‘2′|..‘9′

The production rules of the CFG are shown above left and the semantic rules respon-

sible for calculating the attribute values are to the right. These have been highlighted in

Dai et al.’s work on S-DVAE [11]. The attribute grammar is used to check the semantic

rules such as opening and closing of rings, etc. Such dependencies are not context-

free [11].

For a given SMILES string, its parse tree may be generated from the CFG and for

each node in the tree, the corresponding attribute values may be checked and the overall

validity of the string may be determined. However, while generating a string, there is

no tree to begin with. For example, when extending the start symbol 〈s〉, none of its
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children are generated and hence 〈s〉.matched cannot be computed. To address this is-

sue, stochastic lazy attributes were introduced. Whenever there is lack of a synthesized

attribute due to absence of children nodes, a stochastic attribute (a value sampled from

a Bernoulli distribution) is given to the node under consideration. These stochastic at-

tributes are then passed on to its children nodes to ensure semantic validation during

tree generation. Now, a non-terminal node v whose semantic rules are either satisfied or

has stochastic attributes is chosen and then a rule from the production rules of the CFG

is sampled according to the distribution pθ (r|v,T ) where r is the rule and T is the syn-

tax tree built so far. Based on the production rules, the non-terminal can be expanded

and the symbol can be added as children to node v.

In this manner, the generation process of the SMILES string follows the semantic

constraints and the syntactic rules (by following production rules of CFG) at every step.

The architecture employed is that of a variational autoencoder where the encoder ap-

proximates the posterior of the latent variable and the tree generation procedure samples

from the decoder probability. The paper reports that 43.5% of generated SMILES were

valid.

2.3 ORGAN for Sequence Generation Models

This paper [7] introduces a novel approach to optimize the properties of a distri-

bution of sequences. The ORGAN includes a generator that maximizes a weighted

average of the objective function and domain-specific metric. These two types of re-

wards are considered together. The discriminator is trained along with the generator

in an adversarial fashion [21]. This idea is implemented on top of the SeqGAN [22]

architecture that combines GANs and RL for sequential data generation.

In SeqGan, the generator is trained to produce sequences and the discriminator is

trained to distinguish between real and generated sequences. However, the sampling
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process is not differentiable for discrete data. The generator is thus trained as an RL

agent whose reward function R(Y1:T ) is defined for full-length sequences. Given an in-

complete sequence Y1:t , Gθ must produce an action a, along with the next token yt+1.

The agent’s stochastic policy is given by, Gθ (yt |Y1:t−1) and its expected long term re-

ward is to be maximized. The long term reward is represented by the following equa-

tion:

J(θ) = E[R(Y1:T )|s0,θ ] = ∑
y1∈Y

Gθ (y1|s0).Q(s0,y1) (Eqn 2.2)

where s0 is a fixed initial state, Q(s,a) is the action-value function representing the

expected reward at state s of taking an action a and following the current policy Gθ to

complete the rest of the sequence.

In order to account for the domain-specific desired objective, the reward function for

a particular sequence Y1:t is extended to a linear combination of Dφ and Oi, parametrized

by λ as follows:

R(Y1:T ) = λ .Dφ (Y1:T )+(1−λ ).Oi(Y1:T ) (Eqn 2.3)

If λ = 0, the model ignores D and becomes a “naive" RL algorithm, whereas if

λ = 1, it is simply a SeqGAN model. Here, Oi corresponds to domain-specific objec-

tive values. For molecules, some of the objectives chosen were solubility (in water),

synthesizability (how hard is it to synthesize the given molecule) and druglikeliness

(having drug-like properties).

All the above discussed methods, although demonstrating promising results, leave

scope for improvement in terms of validity of generated strings. The hypothesis of in-

cluding a validity score in training these models is formulated and tested. This modified

training strategy presents increase in the validity. Details are described in Chapter 6.
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CHAPTER 3

MOLECULAR REPRESENTATIONS FOR COMPUTATION

In recent times, automatic chemical property predictions using machine learning

has become popular in the drug discovery community [23–26]. Majority of these algo-

rithms take fixed-length vectors as input [27,28] although this is a difficult task [29,30].

Molecules differ in types of atoms, bonds, etc, which makes it tricky to represent them

using fixed-length vectors. Overall, the choice of the representation of molecules is

imperative for machine learning-based drug discovery [31].

Traditionally, fixed-length vector representations of molecules, named fingerprints,

are designed based on human expertise knowledge and is not data-driven [25, 32]. One

example is based on hashing procedures known as Extended Connectivity FingerPrint

(ECFP) [33]. Such fingerprints are obtained by a lossy compression [34] and are effi-

cient in speed and non-invertible. Another non-data-driven fingerprint is based on local

sub-structures of molecules. Fingerprint feature vectors are designed for specific tasks

using highly related molecular sub-structures [35, 36]. However, this kind of design

is highly task-dependent and requires years of expertise and experience. Thus, non-

data driven fingerprints are either unable to encode enough information or are highly

dependent on human knowledge.

Chemical structures may be represented by linear notations which encode their

stereochemisty as text [37]. These can be also leveraged to store and check the iden-
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tity of molecules. Such representations are compact, human-readable and can be easily

entered into software (like text entry boxes in websites, spreadsheet cells, etc.). Each

molecule may have a unique representation (canonical), thus making it easier to identify

them and search for them in the web and chemical databases. [38].

Two of the most widely used line notations are Weininger’s SMILES string [39] also

developed by Daylight Chemical Information Systems [40], and InChI (International

Chemistry Identifier) representation from IUPAC [41].

3.1 SMILE Representation of Molecules

The SMILES format is the most popularly used line notation. In this system,

the atoms, bonds and rings of chemical structures are encoded in a graph [31]. For

example, dinitrogen and methyl isocyanate are represented as N N (N#N) and

CH3N C O (CN=C=O) with corresponding SMILE representations in brack-

ets. The Figure FC3.1 [31] shows some more examples of the SMILE representation.

Figure FC3.1: Examples of SMILE representations

However, there are some drawbacks of the SMILES format as highlighted by Noel

M O’Boyle [38]. It cannot be used to represent molecules with more than 2 valence

electrons. It also fails to support a variety of stereochemistry types. Also, aromaticity

cannot be handled in a standard way. Moreover, canonical representations cannot be

generated. A canonical representation is unique in the sense that each structure is always
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represented by the same line notation [42].

3.2 InChI Representation of Molecules

There was a need for a standard linear canonical representation which led to InChI

(proposed by Steve Heller and Steve Stein at the National Institute of Standards and

Technology in the US) [38]. The main design modification was in allowing informa-

tion linking of the same molecule across various databases and generating a canonical

representation. To do this, the InChI algorithm identifies isomers using a layered net-

work. Isomers are chemical compounds with the same formula but different spatial

arrangement of atoms within the molecule, often leading to different properties.

3.3 Fingerprint based methods

Hash-based fingerprints ECFP [33] is one of the most popular hash-based method.

Circular fingerprints generate features from each iteration by applying a fixed hash

function on the features of the previous iteration. However, they do not capture enough

information as oftentimes the hash function can not be inverted. This results in lower

performance in any predictive task [31].

Biologist-guided Local-Feature Fingerprints Biologist identify task-related sub-structures

and produce fingerprints by using their count as local features [35]. This kind of finger-

print methods is usually highly task-specific and are not generalizable [31].

Supervised Deep Learning-based Fingerprints Molecular fingerprint are learned from

data samples using deep learning techniques, without explicit human guidance [43–45].

The current best is the neural fingerprint [44] which is obtained by a process similar to
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that of generating circular fingerprints. Here, a fully connected year with a non-linear

activation takes the place of the hash function. However, this requires large amounts of

data and in order to acquire this, a huge number of expensive tests need to be carried

out on the molecules [31].

Seq2seq fingerprint Xu et al. [31] introduce a deep-learned based representation called

seq2seq fingerprint. This format is obtained by training a Gated Recurrent Unit (GRU)

based sequence-to-sequence model. This network maps the input molecular string to

a fixed-size vector which is then fed to another deep GRU network that generates the

original string from the seq2seq fingerprint.

These fingerprints are obtained by additional processing on SMILE strings. SMILE,

although not without drawbacks, is one of the most commonly used and easily readable

representations of molecules. They are essentially strings which can be recognized di-

rectly by powerful sequence-to-sequence models allowing for strong analysis and fur-

ther processing. The major advantages of SMILES format include how easily it can

be read, learnt and understood by humans [38]. However, a lack of published formal

specification has caused several ambiguities leading to differences in implementation.

Moreover, there also exist large amount of data in the SMILE format which can be

leveraged for deep learning tasks. More information on the datasets used commonly

can be obtained in the following Chapter 4.
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CHAPTER 4

DATASET

In order to fully understand all levels of complex diseases, multiple laboratories and

institutes need to collect, assess and understand the required data, such that statistical

conclusions may be reached [46]. Discovering new drugs and interpreting diseases are

subject to unifying analysis of data from various sources.

For the purpose of this thesis, a corpus of valid molecular strings was required in the

SMILE format. Different deep learning architectures were to be trained on a large num-

ber of valid SMILE string samples in order to generate new valid strings. Experiments

were run using the ZINC (recursive acronym - ZINC is not commercial) database [47].

ZINC is a continuously growing library of 727,842 molecules, and their 3D struc-

ture, obtained from catalogs of compounds from vendors [47]. This dataset was created

with the intention of making access to purchasable chemical compounds easy, in order

to facilitate virtual-screening. The database also includes properties such as molecular

weight, calculated LogP, and number of rotatable bonds of the molecules. This dataset

is available for free download and is supported by a web-based tool used for query-

ing, searching, browsing through the database and creating subsets. It contains many

“drug-like" and “lead-like" molecules which are useful for tasks like drug discovery.

The creators of the ZINC database shed some light on smaller details of data col-

lection and filtering [47]. 10 vendor catalogs were used. The dataset was cleared of
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molecules whose formula weight is greater than 700, whose number of hydrogen-bond

donors are greater than 6 and number of hydrogen bond acceptors greater are than 11.

Molecules with solubility measure (LogP) in the range of -4 and 6 were only included

while the others were removed and the number of rotatable bonds of all molecules

were lesser than 15. H,C,N,O,F,S,P,Cl,Br, I was the set of allowed atoms within the

molecules. The only inclusions that violated these constraints were actual drugs. These

rules allow the database to roughly comply with expert opinions regarding “drug-like"

properties. The molecules obtained were also converted to canonical forms using tools

of OpenEye Scientific Software (http://www.eyesopen.com). This ensures unique rep-

resentation for a particular molecule.

To run the experiments included in this work, a subset of SMILE strings from ZINC

dataset were used. The details of the data used are included in Table TC4.1.

Table TC4.1: Details of ZINC dataset used

Training set size 50,000
Num. of valid points 50,000

Max. data length 162
Size of alphabets 34
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CHAPTER 5

DEEP LEARNING MODELS

In order to test the hypothesis, a variety of deep learning models have been used.

This chapter deals with briefly describing these models and their working. It is im-

portant to understand the intuition and functioning of these models for a better overall

perception of the task at hand and a better interpretation of the results. The following

models are being discussed.

• RNN

• LSTM

• AE

• VAE

• GAN

5.1 RNN

RNNs are dynamic models used to generate sequences. They can be trained to pre-

dict what comes next given real data sequences from each of the previous time steps.

The trained networks can generate novel sequences by sampling from their output dis-

tribution and sending these sample as inputs in the following time step.
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Typically, RNNs are used in cases where temporal data is to be modelled because

of their inherent internal memory [19]. Loosely speaking, they remember important

information from both the input they received previously and currently in order to give

very precise predictions of the future. An RNN takes the present and the past as its

inputs. Sequential data contains crucial information about what comes next and this is

leveraged by RNNs. Weights are applied to both current input as well as previous inputs

and these weights are updated through gradient descent and backpropogation through

time. RNNs may be considered as a series of Neural Networks trained successively

with backpropogation.

An input vector sequence x = (x1,x2, ...xT )) goes through multiple hidden layers

that are recurrently connected to compute the hidden states hn = hn
1,h

n
2, ...h

n
T and the

output vector y = (y1,y2, ...yT ). Each output vector yt is used to obtain a distribution

Pr(xt+1|yt) to sample the next possible input xt+1.

The following equations (Eqn 5.1 and Eqn 5.2) are used to calculate the hidden layer

activations. t iterates from 1 to T and n from 2 to N.

h1
t = H (Wih1xt +Wh1h1h1

t1 +b1
h) (Eqn 5.1)

hn
t = H (Wihnxt +Whn−1hnhn−1

t +Whnhnhn
t1 +bn

h) (Eqn 5.2)

Here the W terms are weight matrices, the b terms indicate bias vectors and H is

the function of the hidden layer.

Given the hidden states, the output ŷt is computed as follow,

ŷt = by +
N

∑
n=1

Whnyhn
t (Eqn 5.3)

yt = Y (ŷt) (Eqn 5.4)
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where Y is the output layer function.

The probability of the input sequence x is

Pr(x) = Π
T
t−1Pr(xt+1|yt) (Eqn 5.5)

and the sequence loss L (x) is:

L =−
T

∑
t=1

logPr(xt+1|yt) (Eqn 5.6)

5.2 LSTM

There are two major obstacles RNN’s deal with – exploding gradients and vanishing

gradients. The former happens when the weights are assigned high importance and

their updates keep getting multiplied leading to very large values. The latter happens

when the value of the gradients are too small which stops the model from learning or

it converges too slow. Also, in practice, RNNs are unable to store information about

past inputs for very long. Having a longer memory has a more stabilising effect. LSTM

[48] is an RNN architecture shown to address the problems of exploding and vanishing

gradients.

LSTM architecture uses cells with memory for storing information and for finding

long range dependencies in the data. Using vanilla LSTMs, H is implemented by the

following functions.



20

it = σ(Wxixt +Whiht1 +Wcict1 +bi)

ft = σ(Wx f xt +Wh f ht1 +Wc f ct1 +b f )

ct = ftct−1 + ittanh(Wxcxt +Whcht1 +Whcct1 +b f )

ot = σ(Wxoxt +Whoht1 +Wcoct +bo)

ht = ottanh(ct)

(Eqn 5.7)

here σ in Eqn 5.7 is the logistic sigmoid function, and the input gate, forget gate,

output gate, cell and cell input activation vectors, all of which are the same size as the

hidden vector h are represented by i, f ,o and c respectively .

5.3 AE

Autoencoders are artificial neural networks used to learn efficient data codings in

an unsupervised manner [49]. The representation also called encoding learned is typi-

cally of reduced dimension. Along with the dimensionality reduction, a network is also

included which learns reconstruction of the input.

An AE tries to learn a function hW,b(x)≈ x. It approximates an identity function, so

as to output x̂ that is similar to x. It compresses the input to a latent-space representation

and then reconstructs the output from this representation. It consists of an encoder and a

decoder. Encoder is the part that compresses the input into a latent-space representation.

The decoder is the part that reconstructs the input from the latent space representation.

The idea behind AE is that the latent representation h can help identify and analyse

meaningful properties. AEs are trained to minimise the reconstruction error as given by
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Eqn 5.8.

L (x,x′) = ||x− x′||2 = ||x−σ
′(W ′(σ(Wx+b))+b′)||2 (Eqn 5.8)

W is a weight matrix and b is a bias vector for the encoder whereas W ′ and b′ are the

corresponding parameters for the decoder.

5.4 VAE

A VAE model is very similar to the AE where an encoder encodes the input to a

vector or scalar, then a decoder decodes the vector back to its original form [31]. The

difference lies in the assumption made by the the VAE model that the embedded space

follows a Gaussian distribution. If P(X) is the true distribution of the data, P(z) is the

distribution of latent variable where z is the latent variable, and P(X |z) is the distribution

of generating data given latent variable, then P(X) can be given by Eqn 5.9.

P(X) =
∫

P(X |z)P(z)dz (Eqn 5.9)

The idea of VAE is to infer P(z) using P(z|X). P(z|X) using a popular choice of

method in bayesian inference called Variational Inference (VI). VI proposes to pose

the inference problem as an optimization problem. One approach to this is by mod-

eling the true distribution P(z|X) using a known distribution that is easy to evaluate,

like Gaussian, and minimizing the difference between those two distribution using KL

divergence metric (which measures the distance two distributions are) [11]. The final

VAE objective function is given by,

log(P(X))−DKL[Q(z|X)||P(z|X)] = E[log(P(X |z)]−DKL[Q(z|X)||P(z)] (Eqn 5.10)
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where Q(z|X) is the known Gaussian distribution.

5.5 GAN

GANs [21] consist of a generator G and a discriminator D which are trained via

an adversarial process. G captures the distribution of the data and D estimates the

probability that a sample is true or false. If a sample is drawn from the training data,

then it is a true sample and if it is generated by G, then it is a false sample. The training

strategy for G is to maximize the probability of fooling D and making it wrongly classify

a sample as true or false. Thus, they play a two-player minimax game. Here, both G

and D are represented by multilayer perceptrons and the entire system can be trained

with backpropagation.

To learn the generator’s distribution pg over data x, the input noise variables pz(z)

is assumed to follow a prior distribution. A generator G(z;θg) function is then used to

map the prior to the data space and is parameterized by θg. Another function D(x;θd)

that outputs whether its input is true or false, is also defined. It approximates the prob-

ability that the input x was sampled from the data or generated by G. D is trained to

maximize the probability of correctly classifying its input samples. G is trained to min-

imize log(1−D(G(z))). Thus, D and G try to optimize the following value function

V (G,D),

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (Eqn 5.11)
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CHAPTER 6

PROPOSED APPROACH, EXPERIMENTS AND RESULTS

This chapter discusses the main contributions of this thesis, the experiments run to

test the hypothesis and the results obtained.

6.1 Hypothesis

The hypothesis of this work is that the validity of SMILE strings generated using

deep generative models may be improved by explicitly training these models for validity

with the help of a validity factor.

Generally speaking, the deep generative models used for this task are trained to min-

imize a reconstruction loss (using RNNs and VAEs) or a minimax loss (using GANs).

Naturally, a model that is being trained to reconstruct valid SMILE strings (fed during

training) learns a latent molecular space from which sampling during inference, results

in new and valid strings. However, what if during training, the model was explicitly told

when it was decoding valid strings and when it wasn’t? This could enable the model to

focus on not only reconstruction but also valid string generation. One way to achieve

this is by explicitly penalizing the model when it generates an invalid string and reward-

ing it for every valid string produced. The simplest way of doing this is by modifying

the loss function.



24

In this work, a validity factor v f is introduced which parameterises a function F

that modifies the loss value accordingly. The validity factor at each training step deter-

mines whether the model will be penalized or rewarded. The modified loss function for

iteration i will be obtained by the following equation,

Lnewi = F (Li,v fi) (Eqn 6.1)

where Li is the reconstruction loss value for the ith step. In the current setting, v f is

designed to upscale or downscale the value of the loss L to obtain Lnew. At each training

step of the deep generative model, it is made to generate a string which is then checked

for validity. If the generated string is invalid, then v f for that step is set to a value ≥ 1

and if it is valid, the value is set to ≤ 1. Ideally, value of v f needs to be set in such a

way that the value of Lnew follows the following matrix.

Table TC6.1: Table for loss values
Loss function values Invalid Sequence Valid Sequence

High value of Li Very high value of Lnewi
High value of Lnewi

Low value of Li High value of Lnewi
Very high value of Lnewi

In the case of the RNN [12], valid SMILE strings were fed as input, in order to

reconstruct them. Thus the model minimizes the reconstruction loss between the gen-

erated sequence and the actual sequence. In VAE [11], there are both reconstruction

loss and KL-divergence which are optimized by the model. In the new setting, these

models will optimize the modified loss which will be greater in case of invalid string

generation and lesser if the generated string is valid. Figure FC6.1 shows the block

diagram for the proposed approach.
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Figure FC6.1: Block diagram for proposed approach

6.2 Rules for validity

A generated SMILE string may be deemed valid if it satisfies a set of rules (both

syntactic and semantic).

Atoms

1. Atoms are represented by their chemical formulas in square brackets

2. Brackets may be excluded if atoms

(a) are B, C, N, O, P, S or a halogen (F, Cl, Br, I), and

(b) do not have a formal charge

(c) are regular isotopes

Bonds A bond is represented using:

1. . - = # $ : / \

2. ‘.’, to indicate that two parts are not bonded together (“non-bond")

Rings
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1. Ring structures are indicated by numerical labels to show closing of rings

2. Multiple ring closings are shown by multiple digits

3. A bond type indicating the type of the ring-closing bond may be written before

the digits

4. Multiple bonds may not be represented by ring-closing bonds

Branching

1. Branches are described with parentheses

2. The atom at the branch is attached to both the first atom inside the parentheses as

well as the first atom after the parenthesis

3. Branches may be written in any order

Although this is not an exhaustive list of rules to be followed, it is essential that

all valid SMILE strings follow this set of rules. For all experiments, the validity of

generated strings is tested with the help of RDKit library1 that inherently checks for

all the rules. RDKit is an open source tool for chemoinformatics that supports APIs for

Python, C++ and Java and has functionalities for almost all kind of operations involving

molecules.

6.3 Experiments and Results

In order to test the hypothesis in section 6.1, the modified training strategy involv-

ing a validity factor was experimented upon two architectures, namely RNN [12] and

VAE [11]. For all the experiments, the value of validity factor v f was taken as 2 and
1https://github.com/rdkit/rdkit
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F (a,b) = a×b. Although these allocations do not strictly conform with Table TC6.1,

they were chosen solely for the purpose of testing the hypothesis. Both models were

trained on a dataset sample of 50000 SMILES (all valid) and while testing for validity,

200 new samples were generated.

6.3.1 Experiments with RNN

The RNN model implementation2 used was based on the original paper [12]. The

RNN model had three stacked LSTM layers (as done in the paper). The model was

trained till convergence using a batch size of 128 and embedding dimension 248. The

learning rate used was 0.005. To generate novel molecules, 200 sequences were sam-

pled from the model and the percentage of valid SMILES was calculated. This sampling

was repeated 5 times and the results shown in Table TC6.2 is an average value. The va-

lidity percentage has improved by 4.5%.

Table TC6.2: Validity results (%) using RNN with validity factor

Method No. of samples Validity (%)
RNN by Segler et al. 200 74.50

RNN with validity factor 200 89.50

6.3.2 Experiments with S-DVAE

The original S-DVAE implementation3 mentioned in the paper [11] has been used

for this experiment. The model was trained using a batch size of 300 for 500 epochs

with a learning rate of 0.0001. 200 sequences were sampled 5 times and the average

validity percentage obtained is given in Table TC6.3. There is an improvement of 49%.
2https://github.com/nair-p/Generate-novel-molecules-with-LSTM
3https://github.com/Hanjun-Dai/sdvae
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Table TC6.3: Validity results (%) using S-DVAE with validity factor

Method No. of samples Validity (%)
S-DVAE by Dai et al. 200 27.50

S-DVAE with validity factor 200 41.00

6.4 Discussion

The experimental results show improvement in validity due to the modified train-

ing strategy involving a validity factor. Intuitively, this makes sense as the model is

being penalized for every invalid sequence it generates at each step of the training and

rewarded for generating a valid string. Since the loss values increase and decrease dras-

tically, the model learns the valid molecular space representation faster and better.

The results obtained by the experiments are only preliminary, yet are promising.

However, there are some points to be taken note of. The implications of the chosen

validity factor and function F on the results, is to be studied. Other validity factors

and functions need to be explored, keeping in mind the conditions of Table TC6.1.

Although both RNN and S-DVAE are considered as the state-of-the-art methods for

molecule generation, it would be interesting to test this training strategy on a GAN

architecture like ORGAN [15]. Moreover, since this work is focused entirely on the

validity of generated SMILES, other factors such as reconstruction and diversity of

generated list of molecules, have not been considered. It is possible that such a strategy

may negatively affect diversity.

Although this entire work was modelled around generating valid molecules, it can

also be formulated in a more general manner, for producing arbitrary sequences that

follow certain rules of syntax and semantics. This is an open problem and hence investi-

gating the effects of the proposed training strategy on problems like program generation

or any kind of structural sequence generation would bring forth intriguing insights.
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CHAPTER 7

CONCLUSION

This thesis tested the hypothesis of explicitly training deep generative models for

validity of SMILES. A modified training approach that involves a validity factor was

introduced. According to this approach, at each step of training, for every invalid string

generated, the model is penalized by increasing the loss value and for every valid string

generated, the model is rewarded by reducing the loss value. A generated SMILE string

is checked for validity against the set of pre-defined generative syntactic and semantic

rules. This strategy was tested on two deep generative architectures – RNNs and VAEs.

The experiments resulted in a 4.5% and 49.0% improvement in validity respectively.

However, other factors like diversity and reconstruction are not considered. Also, the

strategy needs to be examined more with multiple kinds of validity factors. Having

mentioned these caveats, it should be noted that on a basic level, the hypothesis has

been tested and validated.
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